Development of a multiplexed microbioreactor system for high-throughput bioprocessing.

نویسندگان

  • Nicolas Szita
  • Paolo Boccazzi
  • Zhiyu Zhang
  • Patrick Boyle
  • Anthony J Sinskey
  • Klavs F Jensen
چکیده

A multiplexed microbioreactor system for parallel operation of multiple microbial fermentation is described. The system includes miniature motors for magnetic stirring of the microbioreactors and optics to monitor the fermentation parameters optical density (OD), dissolved oxygen (DO), and pH, in-situ and in real time. The microbioreactors are fabricated out of poly(methylmethacrylate)(PMMA) and poly(dimethylsiloxane)(PDMS), and have a working volume of 150 microl. Oxygenation of the cells occurs through a thin PDMS membrane at the top of the reactor chamber. Stirring is achieved with a magnetic spin bar in the reactor chamber. Parallel microbial fermentations with Escherichia coli are carried out in four stirred microbioreactors and demonstrate the reproducible performance of the multiplexed system. The profiles for OD, DO, and pH compare favourably to fermentations performed in bioreactor systems with multiple bench-scale reactors. Finally, the multiplexed system is used to compare two different reactor designs, demonstrating that the reproducibility of the system permits the quantification of microbioreactor performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-cost microbioreactor for high-throughput bioprocessing.

The design of a microbioreactor is described. An optical sensing system was used for continuous measurements of pH, dissolved oxygen, and optical density in a 2 mL working volume. The K(L)a of the microbioreactor was evaluated under different conditions. An Escherichia coli fermentation in both the microbioreactor and a standard 1 L bioreactor showed similar pH, dissolved oxygen, and optical de...

متن کامل

MTL Annual Research Report 2004-2005

This project aims at developing high-throughput platforms for bioprocess developments. Based on the membraneaerated microbioreactor [1], we have realized a microlitervolume, actively-mixed, and polymer-based microbioreactor by microfabrication and precision machining of PDMS and PMMA for batch [2] and continuous cultures [3] of microbial cells. Biological applications of microbioreactors, such ...

متن کامل

Membrane-aerated microbioreactor for high-throughput bioprocessing.

A microbioreactor with a volume of microliters is fabricated out of poly(dimethylsiloxane) (PDMS) and glass. Aeration of microbial cultures is through a gas-permeable PDMS membrane. Sensors are integrated for on-line measurement of optical density (OD), dissolved oxygen (DO), and pH. All three parameter measurements are based on optical methods. Optical density is monitored via transmittance me...

متن کامل

Electromagnetic stirring in a microbioreactor with non‐conventional chamber morphology and implementation of multiplexed mixing

BACKGROUND Microbioreactors have emerged as novel tools for early bioprocess development. Mixing lies at the heart of bioreactor operation (at all scales). The successful implementation of micro-stirring methods is thus central to the further advancement of microbioreactor technology. The aim of this study was to develop a micro-stirring method that aids robust microbioreactor operation and fac...

متن کامل

High-speed All- Optical Time Division Multiplexed Node

In future high-speed self-routing photonic networks based on all-optical time division multiplexing (OTDM) it is highly desirable to carry out packet switching, clock recovery and demultplexing in the optical domain in order to avoid the bottleneck due to the optoelectronics conversion. In this paper we propose a self-routing OTDM node structure composed of an all-optical router and demultiplex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 2005